Swirl diffusers with adjustable defelctors

iffusion

Description

DEQ: supply and return swirl diffuser RAL9010 white finish

- square diffuser with swirl throw and adjustable wing deflectors in black plastic
- installation height between 2.7 and 4.0 m
- · suitable for systems with variable air flow rate
- · fastening with 4 screws + cover

DEQG24-60: like DEQ24-60 but with 20% greater surface area DER: like DEQ but in circular version (30% increase)

Accessories

PL: side entry plenum

PPLIS: pyramid plenum with side entry + damper, including external insulation reaction to fire class B-s2-dO (DN oval inlets 150/160-200-250)

PT: upper entry plenum

R: cylindrical equaliser wire

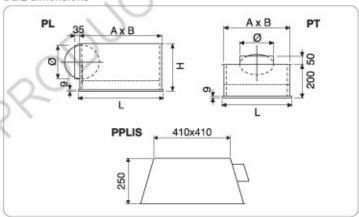
S: volume control damper plenum intake, adjustable by diffuser

I: external insulation reaction to fire class B-s2-d0

Special versions

DEQ-CG: ceiling application (on request)

DEQ-M: application on metal false ceilings (on request)


VR: coating according to RAL 9005 / 9006 table

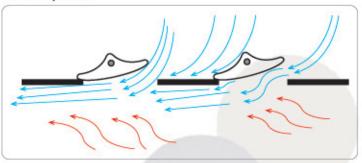
fixed surcharge €30 + 20% per piece

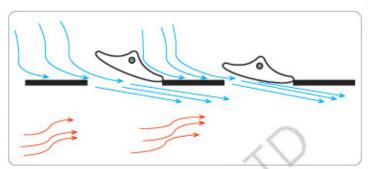
Other RAL colours on request

Special version for false ceilings on request (see page 10)

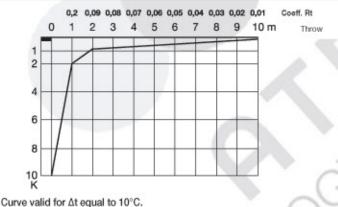
DEQ dimensions

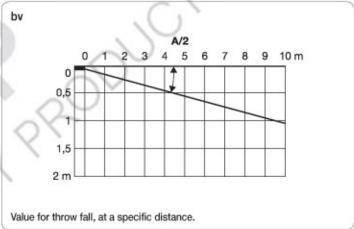
GR	L	DER	AxB	н	0
8-30	296	-	260	250	158
8-60	596	2	560	250	198
16-40	396	- 1	360	250	198
16-60	596	-0	560	250	198
20-50	496		460	250	198
20-60	596		560	250	198
24-60	596	596	560	300	248
24-62	621	20	580	300	248
24-80	796		760	400	313


Selection table


				S)	1321				Туре		1000							
Flow rate (m ³ /h)	8-30 8-60		16-40 16-60		20-50 20-60		24-60 24-62			DEQG 24-60			24-80					
	L _{0.25}	Δpt	Lwa	L _{0.25}	Δpt	L _{wa}	L _{0.25}	Δpt	L _{wx}	L _{0.25}	Δpt	L	L _{0.25}	Δpt	L _{WA}	L _{0.25}	∆pt	L _{WA}
54	0.9	4	>20	2-	-	-	. 2	-	-	-	-	-		-	- 1	-	1	-
72	1.1	5	>20	34	-	-	-	-	-		28	-	-	-	-	-	-	12
90	1.3	8	20	-	-	-	-	-	-	-	-0		-	-	-	-	-	-
108	1.5	10	24	0.9	7	>20	-	-	-		-1	-	-	-	-	-	-	
144	1.8	18	26	1.0	11	>20	0.9	4	>20	-	-0	-	:-:	-		-	-	-
180	2.2	23	30	1.3	15	21	1.0	5	>20	-	-	0.51	0.51	120	-	-	15	ं
216	2.6	28	32	1.5	20	25	1.2	7	>20	1.0	3	>20	0.50	0.7%		100	3.5	-
252	3.0	35	36	1.8	30	29	1.4	9	>20	1.2	5	>20			-			
288	3.6	48	40	2.0	40	32	1.6	12	20	1.4	7	>20	-	-	-	-	-	-
360	323	-20	72	2.5	60	36	2.0	20	25	1.8	10	>20	1.5	10	>20	- 4	-	-
450		120	- 2	3.2	85	42	2.6	28	31	2.0	15	23	1.7	15	20	-	-	-
540	-	-	34	-	-	-	3.0	42	36	2.5	25	28	2.1	20	25	2.0	6	>20
720	-	-	-		-	-	4.0	80	47	3.4	38	36	2.8	30	32	2.4	10	23
900		114	-	-	-	-	-	-	-	4.0	65	43	3.4	45	38	2.8	16	30
1080			-	1-	-	-	-	-	-	-0	-	g-s	4.2	65	44	3.2	21	36
1260		-	-	-	-	-	-	-	-	- 1	-		-		-	3.6	27	40
1440		5.5	1.5	-	-	-	-	-	-	50	-	-	050	-		4.0	42	44

Swirl diffusers with adjustable defelctors


Deflector position


Deflectors: with special profile capable of generating air flows to obtain ultra-high mixing, reduced pressure drop and reduced noise level.

Temperature difference

Temperature difference between ambient temp, and throw temp.

Throw fall

0,5 m 1.8 m

L_{0.25}: throw which corresponds to an end-of-throw velocity of 0.25 m/s; with this value the V_{zA} = velocity in the occupied zone is between 0.15 m/s for rooms with a height of 2.7 m and 0.10 m/s for rooms with a height of 3.6 m.

Δpt: total pressure drop (Pa)

Lwa: sound pressure level [dB(A)]

ratio between the Δt , (difference in room temperature and throw temperature) and Δt, (temperature difference between supply and room)

velocity in occupied zone (m/s)

temperature in the occupied zone (°C)

throw fall (m)

room height (m)

h: vertical throw over the occupied zone (m)

distance between diffusers A:

distance between diffuser and wall

- Room dim. 10x10xH 2.8 m (volume 280 m³)
- . Air flow: 2100 m3/h (exchanges 7.5)
- · Occupied zone: 1.8 m
- · Room temperature: 25°C (project)
- Supply air temperature: 15°C
- · Assuming the installation of 4 diffusers Flow 2100 m3/h: 4 diffusers = 525 m3/h
- · From selection table DEQ24/60 - 540 m³/h as a result: throw of 2.5 m with end-of-throw velocity of 0.25 m/s Δpt: 25 Pa - L_{wa}: 28 dB(A) V_{zs}: velocity in occupied zone between 0.10-0.15 m/s

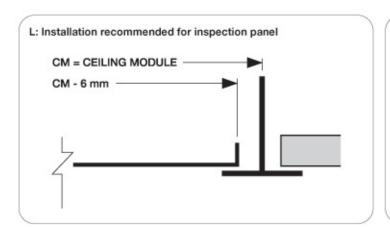
Temperature difference

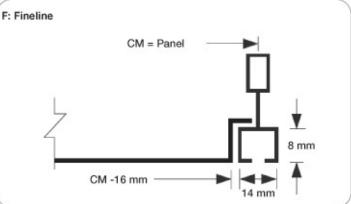
You can obtain the air temperature at the end of the throw

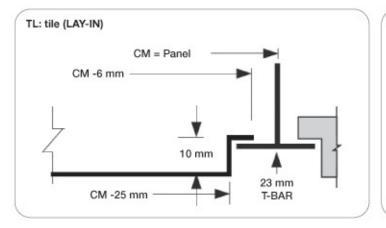
- T_{zA}: 25°C (room temperature)
- T: 15°C (supply air temperature)

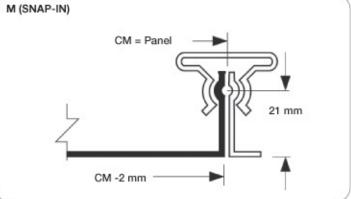
- . Considering an overall throw of: [L0.25 (2.5m) + (H 2.8 - 1.8 occupied zone)] = 3.5 m from the Temperature difference table, you can establish that with Δt 10 and
- throw of 3.5 m, the ratio is: 0.075
- Multiplying the value R, x Δt (0.075 x. -10°C) = 0.75 so the temperature at the end of the throw will be: 25 - 0.75 = 24.25°C

Throw fall


- · A: distance between diffusers
- A/2: 5/2 = 2.5 m
- with A/2 = 2.5 m the throw fall is: 0.3 m




Profiles for false ceilings


IT IS possible to produce some of our products with panel edges suitable for various types of false ceilings:

- DCRQ
- DEQ
- DQER/Q
- DMFQ
- DMUQ
- DQB4
- RSKP
- RSKO

